Metabolic programming of a beige adipocyte phenotype by genistein
نویسندگان
چکیده
SCOPE Promoting the development of brown or beige adipose tissue may protect against obesity and related metabolic features, and potentially underlies protective effects of genistein in mice. METHODS AND RESULTS We observed that application of genistein to 3T3-L1 adipocytes changed the lipid distribution from large droplets to a multilocular distribution, reduced mRNAs indicative of white adipocytes (ACC, Fasn, Fabp4, HSL, chemerin, and resistin) and increased mRNAs that are a characteristic feature of brown/beige adipocytes (CD-137 and UCP1). Transcripts with a role in adipocyte differentiation (Cebpβ, Pgc1α, Sirt1) peaked at different times after application of genistein. These responses were not affected by the estrogen receptor (ER) antagonist fulvestrant, revealing that this action of genistein is not through the classical ER pathway. The Sirt1 inhibitor Ex-527 curtailed the genistein-mediated increase in UCP1 and Cebpβ mRNA, revealing a role for Sirt1 in mediating the effect. Baseline oxygen consumption and the proportional contribution of proton leak to maximal respiratory capacity was greater for cells exposed to genistein, demonstrating greater mitochondrial uncoupling. CONCLUSIONS We conclude that genistein acts directly on adipocytes or on adipocyte progenitor cells to programme the cells metabolically to adopt features of beige adipocytes. Thus, this natural dietary agent may protect against obesity and related metabolic disease.
منابع مشابه
Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance☆
OBJECTIVE Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in...
متن کاملDifferential actions of PPAR-α and PPAR-β/δ on beige adipocyte formation: A study in the subcutaneous white adipose tissue of obese male mice
BACKGROUND AND AIMS Obesity compromises adipocyte physiology. PPARs are essential to adipocyte plasticity, but its isolated role in the browning phenomenon is not clear. This study aimed to examine whether activation of PPAR-α or PPAR-β/δ could induce beige cell depots in the subcutaneous white adipose tissue of diet-induced obese mice. MATERIAL AND METHODS Sixty animals were randomly assigne...
متن کاملDirecting visceral white adipocyte precursors to a thermogenic adipocyte fate improves insulin sensitivity in obese mice
Visceral adiposity confers significant risk for developing metabolic disease in obesity whereas preferential expansion of subcutaneous white adipose tissue (WAT) appears protective. Unlike subcutaneous WAT, visceral WAT is resistant to adopting a protective thermogenic phenotype characterized by the accumulation of Ucp1+ beige/BRITE adipocytes (termed 'browning'). In this study, we investigated...
متن کاملTranscription regulators and hormones involved in the development of brown fat and white fat browning. Transcriptional and hormonal control of brown/beige fat development.
The high prevalence of obesity and related metabolic complications has inspired research on adipose tissues. Three kinds of adipose tissues are identified in mammals: brown adipose tissue (BAT), beige or brite adipose tissue and white adipose tissue (WAT). Beige adipocytes share some characteristics with brown adipocytes such as the expression of UCP1. Beige adipocytes can be activated by envir...
متن کاملZinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-β expression
Given the relevance of beige adipocytes in adult humans, a better understanding of the molecular circuits involved in beige adipocyte biogenesis has provided new insight into human brown adipocyte biology. Genetic mutations in SLC39A13/ZIP13, a member of zinc transporter family, are known to reduce adipose tissue mass in humans; however, the underlying mechanisms remains unknown. Here, we demon...
متن کامل